• <fieldset id="qkyym"></fieldset>
    <abbr id="qkyym"></abbr>
    <strike id="qkyym"></strike>
    <button id="qkyym"><noscript id="qkyym"></noscript></button>
  • <center id="qkyym"></center>

    两性色午夜视频免费网,91精品欧美激情在线播放,国产小视频在线观看免费,欧美日韩一区在线观看

    歡迎訪(fǎng)問(wèn)中國科學(xué)院重慶綠色智能技術(shù)研究院!

    副研究員

    李占成
    性別:
    職稱(chēng):副研究員
    學(xué)歷:博士
    電話(huà):
    電子郵箱:lizc@cigit.ac.cn
    職務(wù):
    簡(jiǎn)歷

    20126月畢業(yè)于中國科學(xué)技術(shù)大學(xué)。主要開(kāi)展大面積單晶銅可控制備,石墨烯、過(guò)渡金屬硫族化合物等二維材料高品質(zhì)制備及其光學(xué)特性研究。主持國家自然科學(xué)基金、中國科學(xué)院“西部之光”、重慶市人才計劃等項目,并作為主要人員參與863、工業(yè)強基、自然基金重點(diǎn)等國家重大研究項目。在國際知名學(xué)術(shù)期刊已發(fā)表論文17篇,單篇最高引用次數超過(guò)469次;撰寫(xiě)《石墨烯薄膜與柔性光電器件》專(zhuān)著(zhù)1部。獲得國家授權發(fā)明專(zhuān)利12項,其中3項專(zhuān)利成功轉化。研制了具有自主知識產(chǎn)權的國內首條年產(chǎn)100萬(wàn)平方米的單層石墨烯薄膜生產(chǎn)線(xiàn)。參與的“大面積單層石墨烯薄膜生長(cháng)方法與規?;苽浼夹g(shù)”項目獲得重慶市2015年度科學(xué)技術(shù)發(fā)明一等獎(2/6);以主要完成人參與的“基于石墨烯觸摸屏的關(guān)鍵技術(shù)及應用”項目獲得2015年度吳文俊人工智能科學(xué)技術(shù)獎一等獎(5/15)。獲得中國科學(xué)院西部之光人才項目、重慶市高層次人才“青年拔尖”人才項目支持。


    所屬部門(mén)

    微納制造與系統集成研究中心

    研究領(lǐng)域

    二維材料可控制備、金屬箔單晶化處理、光電器件


    社會(huì )任職

    獲獎及榮譽(yù)

    [1] 大面積單層石墨烯薄膜生長(cháng)方法與規?;苽浼夹g(shù), 重慶市人民政府, 技術(shù)發(fā)明一等獎,2015年度

    [2] 基于石墨烯觸摸屏的關(guān)鍵技術(shù)及應用, 中國人工智能學(xué)會(huì ), 科技進(jìn)步獎一等獎,2015年度

    [3] 2016年被選為中國科學(xué)院“西部之光”二十年人才項目成長(cháng)典范


    代表論著(zhù)

    [1] Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; Qin, T.; Zhou, D.; Shen, J.; Sun, J.; Feng, S.; Zhu, M.; Kentsch, U.; Zhou, S.; Shi, H.; Wei, X., Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon. ACS Nano 2022.

    [2] Huang, D.; Duan, Y.; Zhang, L.; li, X.; Zhang, Y.; Ding, F.; Guo, J. Huang, X.; Li, Z.*; Shi, H., Graphene Growth across the Twin Boundaries of Copper Substrate. Advanced Functional Materials 2022, 32(42), 2202415.

    [3] Zhang, Y.; Huang, D.; Duan, Y.; Chen, H.; Tang, L.; Shi, M.; Li, Z.*; Shi, H., Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 2021, 32 (10), 105603.

    [4] Nong, J.; Tang, L.; Lan, G.; Luo, P.; Li, Z.; Huang, D.; Yi, J.; Shi, H.; Wei, W., Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval. Laser & Photonics Reviews 2021, 15 (1), 2000300.

    [5] Nong, J.; Tang, L.; Lan, G.; Luo, P.; Li, Z.; Huang, D.; Shen, J.; Wei, W., Combined Visible Plasmons of Ag Nanoparticles and Infrared Plasmons of Graphene Nanoribbons for High-Performance Surface-Enhanced Raman and Infrared Spectroscopies. Small 2021, 17 (1), 2004640.

    [6] Li, Z.; Zhang, Y.; Duan, Y.; Huang, D.; Shi, H., The Effect of Ethanol on Abnormal Grain Growth in Copper Foils. Nanomaterials (Basel) 2021, 11 (11).

    [7] Zhou, Q.; Shen, J.; Liu, X.; Li, Z.; Jiang, H.; Feng, S.; Feng, W.; Wang, Y.; Wei, D., Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. Nanotechnology 2019, 30 (19), 195202.

    [8] Wang, B.; Cunning, B. V.; Kim, N. Y.; Kargar, F.; Park, S.-Y.;Li, Z.; Joshi, S. R.; Peng, L.; Modepalli, V.; Chen, X.; Shen, Y.; Seong, W. K.; Kwon, Y.; Jang, J.; Shi, H.; Gao, C.; Kim, G.-H.; Shin, T. J.; Kim, K.; Kim, J.-Y.; Balandin, A. A.; Lee, Z.; Ruoff, R. S., Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials 2019, 31 (29), 1903039.

    [9] Zhang, E.; Sun, T.; Ge, B.; Zhang, W.; Gao, X.; Jiang, H.; Li, Z.; Liu, G.; Shen, J., High-performance solar-blind photodetector with graphene and nitrogen-doped reduced graphene oxide quantum dots (rGOQDs). Materials Express 2018, 8 (1), 105-111.

    [10] Whelan, P. R.; Huang, D.; Mackenzie, D.; Messina, S. A.; Li, Z.; Li, X.; Li, Y.; Booth, T. J.; Jepsen, P. U.; Shi, H.; B?ggild, P., Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Opt Express 2018, 26 (14), 17748-17754.

    [11] Wang, B.; Luo, D.; Li, Z.; Kwon, Y.; Wang, M.; Goo, M.; Jin, S.; Huang, M.; Shen, Y.; Shi, H.; Ding, F.; Ruoff, R. S., Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films. Advanced Materials 2018, 30 (28), 1800888.

    [12] Wang, B.; Li, Z.; Wang, C.; Signetti, S.; Cunning, B. V.; Wu, X.; Huang, Y.; Jiang, Y.; Shi, H.; Ryu, S.; Pugno, N. M.; Ruoff, R. S., Folding Large Graphene-on-Polymer Films Yields Laminated Composites with Enhanced Mechanical Performance. Advanced Materials 2018, 30 (35), 1707449.

    [13] Zhao, Z.; Jia, K.; Shaw, J. C.; Zhu, Z.; Wan, W.; Zhan, L.; Li, M.; Wang, H.; Chen, X.;Li, Z.; Chen, S.; Zhou, Y.; Kaner, R. B.; Cai, W., Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Applied Physics Letters 2016, 109 (12), 123107.

    [14] Choi, J.-H.; Li, Z.; Cui, P.; Fan, X.; Zhang, H.; Zeng, C.; Zhang, Z., Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force. Scientific Reports 2013, 3 (1), 1925.

    [15] Li, Z.; Zhang, W.; Fan, X.; Wu, P.; Zeng, C.; Li, Z.; Zhai, X.; Yang, J.; Hou, J., Graphene Thickness Control via Gas-Phase Dynamics in Chemical Vapor Deposition. The Journal of Physical Chemistry C 2012, 116, 10557–10562.

    [16] Li, Z.; Cai, H.; Han, Z.; Zhang, K.; Pan, N.; Wang, X.; Zhai, X.; Zeng, C., Symmetry-Dependent Plasmonic Properties of Three-Dimensional Hybrid Metallic Nanostructure Arrays. The Journal of Physical Chemistry C 2012, 116 (33), 17781-17786.

    [17] Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5 (4), 3385-3390.

    學(xué)術(shù)專(zhuān)著(zhù)

    [1]史浩飛; 李占成 ; 石墨烯薄膜與柔性光電器件, 華東理工大學(xué)出版社, 2021


    承擔科研項目情況